Page 1 of 26

Client Staffordshire Crystal Ltd. Unit 14 Pedmore Road Ind. Estate Brierley Hill West Midlands DY5 1TJ

Part 1: Executive Summary

Report for the Periodic Monitoring of Emissions to Air.

Site Plant Sampling Date Report Date Job Number Permit Number Brierley Hill Furnace 28th January 2016 25th February 2016 71962p1r0 PB/98 Variation 200839393

Report Prepared by: Print

MCERTS No.

Michelle Edwards

MM05 659

Level 2 TE: 1,2,3,4

Report Approved by: Sign

Print MCERTS No.

Derek Myers

MM02 115

Level 2 TE: 1,2,3,4

Exova (UK) Ltd Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0161 4323286 Company Registration No SC070429

Page 2 of 26

Contents

Page 1 Part 1: Executive Summary

- Page 2 Contents
- Page 3 Monitoring Objectives
- Page 3 Special Monitoring Requirements
- Page 4 Summary Of Methods
- Page 4 Summary Of Results
- Page 5 Operating Information
- Page 5 Comments On Monitoring Procedures

Page 6 Part 2: Supporting Information

Page 7 Appendix 1

- Page 8 Emission Monitoring Procedures and Instrumentation
- Page 9 Sampling Personnel
- Page 9 Equipment References
- Page 9 Subcontracted Analysis

Page 10 Appendix 2

- Page 11 Preliminary Velocity Traverse & Moisture Data
- Page 12 Total Particulate Matter Sampling Data
- Page 13 Total Particulate Matter Emission Results
- Page 14 Heavy Metals Sampling Data
- Page 15 Heavy Metals Emission Results
- Page 16 Heavy Metals Field Blank Emission Results

Page 17 Appendix 3

- Page 18 Diagram of Sampling Location
- Page 19 Generic Calculations
- Page 20 Flow Calculations
- Page 21 Concentration Calculation
- Page 22 Uncertainty Estimate Calculations Manual Techniques
- Page 23 Uncertainty Estimate Calculations Instrumental Techniques

Page 24 Appendix 4

- Page 25 Uncertainty Estimates:- Total Particulate Matter
- Page 26 Uncertainty Estimates:- Heavy Metals

Page 3 of 26

Monitoring Objectives

The monitoring was undertaken to check compliance with authorised emission limits.

All monitoring procedures were carried out to the MCERTS requirements under the Exova (UK) Ltd quality system to ISO 17025: 2005.

Monitoring was undertaken for the listed emissions from the following sampling positions:

Sampling Location	Emission
Furnace	Particulates
	Lead
	Oxygen

Special Monitoring Requirements

There were no special requirements for this monitoring campaign.

Summary Of Methods

Emission	Method number	Method standard
Gas velocity and volume flow	TPM/01A	BS EN ISO 16911-1:2013
Particulate	MM0004	BS EN 13284-1 : 2002
Water vapour	MM0010	BS EN 14790 : 2005
Oxygen	MM0002	BS EN 14789 : 2005
Lead	MM0007	BS EN 14385 : 2004

Summary Of Results

The table presents the atmospheric emissions from the tests undertaken on behalf of Staffordshire Crystal Ltd. The results were measured from the sample positions downstream of the arrestment plant.

Emission at	Sampling		Emission	Authorised	Uncertainty	Detection	Mass	
Brierley Hill	Time		Result	Limit	+/-	Limit	Emission	
Furnace	Date	Start	End	mg/m ³ *	mg/m ³ *	mg/m ³ *	mg/m³∗	g/h
s Particulate s Total heavy metals, Pb	28/01/16 28/01/16	14:53 13:54	15:33 14:34	23.9 1.03	20 5	22.8 1.4347	13.3 0.0137	5.8 0.30

* at reference conditions	Stack Gas Weig	jht		0 °C	Dry Gas			
	29.00 Kg	/kmol	101.	3 kPa	Oxygen	1	3	%

Where applicable

Oxides of nitrogen results are expressed as nitrogen dioxide TOC results are expressed as total carbon

Throughout Report:

*	Reference conditions (see above)	Nm ³	273 K, 101.3 kPa
**	Analysis not required	# - Uk	AS accredited only
ND	Non detectable	## - N	ot Accredited
s - Su	bcontracted laboratory analysis	N/A	Not applicable

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a 95% confidence level. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

All tests included in this report are accredited under UKAS and MCERTS accreditation schemes unless otherwise stated. Opinions and interpretations expressed herein are outside the scope of MCERTS and UKAS accreditation.

1783

Page 5 of 26

Operating Information

The table below shows details of the operating information on each sampling date for: Furnace

Date	Process type	Process duration	Fuel	Feedstock	Abatement	Load
28/01/2016	Glass Furnace	Batch	Natural Gas	Glass	None	Normal operation

No CEMs installed on the emission point.

Comments & Monitoring Deviations

A waste gas homogeneity test to BS EN 15259:2007 (MID) is not required: The homogeneity test is not applicable to duct areas less than $1m^2$.

All monitoring was performed in accordance with the relevant procedures.

The sampling location is a vertical duct.

Due to restrictions caused by the temporary scaffold provided for access, sampling could only be undertaken from one horizontal sample port, achieving only single point sampling.

Due to the small platform size the sampling train was leak checked and then the probe removed and re-assembled to allow it to be inserted in the stack.

The particulate monitoring was within the required 95 to 115 % isokinetic rate as stated in BS EN 13284-1: 2002

The velocity and temperature profile at the sampling location met the requirements of BS EN 13284-1: 2002.

The calculated particulate emission level was greater than the control blank.

The impinger efficiency check for lead was not performed because the measured emission was less than 30% of the emission limit value.

When the results are expressed as non-detected the mass emissions are calculated from the detection limit and therefore they are worst case results.

Page 6 of 26

Part 2: Supporting Information

Report for the Periodic Monitoring of Emissions to Air.

Client Site Plant Sampling Date Report Date Job Number Permit Number Staffordshire Crystal Ltd. Brierley Hill Furnace 28th January 2016 25th February 2016 71962p1r0 PB/98 Variation 200839393

Report Prepared by:	Print	Michelle Edwards	
	MCERTS No.	MM05 659	Level 2 TE: 1,2,3,4
Report Approved by:	Sign	S. L. Hypes	
	Print	Derek Myers	
	MCERTS No.	MM02 115	Level 2 TE: 1,2,3,4

Exova (UK) Ltd

Unit 19 Bordesley Green Trading Estate Bordesley Green Road Birmingham B8 1BZ

Tel: 0161 4323286 Company Registration No SC070429

Page 7 of 26

APPENDIX 1

Page 8 of 26

Emission Monitoring Procedures And Instrumentation

Gas velocity and temperature

Documented in-house procedure TPM01/A to the main procedural requirements of BS EN ISO 16911-1:2013 Velocity and temperature measurements are performed using a calibrated Pitot tube, a calibrated pressure differential reading device and a calibrated thermocouple. Velocity and possible flow deviation measurements are carried out at selected, representative points in the gas stream.

Water vapour

Documented in-house procedure MM0010 to the main procedural requirements of BS EN 14790:2005. A measured volume of gas is extracted from the gas stream through a moisture trapping unit. The mass gain of moisture trapped is divided by the volume of gas sampled to determine the mass concentration of water vapour. For water saturated stacks the temperature of the gas stream is measured and the water vapour concentration is determined using liquid-gas equilibrium tables. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Total particulate matter

Documented in-house procedure MM0004 to the main procedural requirements of BS EN 13284-1:2002.

Stack gases are extracted from representative sampling points at isokinetic flow rates through a sharp-edged nozzle. Particulate matter is collected on a pre-weighed filter conditioned at 180°C. Deposits upstream of the filter are also recovered and weighed. The increase of mass of the filter and mass collected upstream of the filter is divided by the volume sampled to determine the mass concentration.

Oxygen

Documented in-house procedure MM0002 to the main procedural requirements of BS EN 14789:2005. Continuous analysis using probe, sample line, gas conditioning system, and a paramagnetic, zirconium cell, or electrochemical cell analyser. The analytical equipment detailed above is calibrated before and during the tests using certified gas mixtures of nitrogen and oxygen. Sampling points are selected in accordance with the findings of any BS EN 15259 assessment.

Lead

Documented in-house procedure MM0007 to the main procedural requirements of BS EN 14385:2004 A substantial metered volume of gas is sampled isokinetically through a sharp edged nozzle dedicated heated probe, filter, and chilled impinger train containing appropriate hydrogen peroxide/nitric acid and sulphuric acid/potassium permanganate solutions, and subsequent Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analysis.

Page 9 of 26

Sampling Project Personnel Competency And Expiry Dates

Report prepared by:	Michelle Edwards	MCERTS No MM05 659	Level 1 -	Level 2 30/06/2017	TE1 31/12/2017	TE2 31/12/2019	TE3 30/06/2018	TE4 29/02/2020
Report authorised by:	Derek Myers	MM02 115	-	30/09/2017	31/05/2018	30/11/2018	30/11/2018	30/11/2018
Team leader:	Michelle Edwards	MM05 659	-	30/06/2017	31/12/2017	31/12/2019	30/06/2018	29/02/2020
Team leader:	Aidan Wrynne	MM08 921	-	31/05/2017	31/05/2017	31/11/2018	30/11/2017	30/06/2018

Equipment References

Equipment	Reference Number
Probe	15
Nozzles	AQ153
Stack Thermocouple	AQ173
Gas Analyser	AQ354
Regulator	AQ901
Timer / Stopwatch	AQ308
Barometer	AQ343
Pitot	AQ102
Callipers	CV24
Tape Measure	AQ278
Impinger Thermocouple	TV34
Sample Rate Calculation Equipment	Laptop
Thermometer	AQ126
Manometer	AQ126
Balance	AQ090
Weights	AQ090a & AQ090b

Subcontracted Analysis

Exova (UK) Ltd has, with your approval, used the following sub-contracted laboratories for the laboratory analyses referenced below:

Laboratory:	Scientific Analysis Laboratories
Parameters:	Lead - Internal method, ICPMS BS EN 14385 Particulates - Internal method, Gravimetric
Accreditation:	UKAS Accredited testing laboratory number 1549

Page 10 of 26

APPENDIX 2

Page 11 of 26

Date	28/01/2016	Barometric pressure	100.5
Time	13:15	Duct static pressure	0.00
Pitot Cp	0.82	Stack Area	0.126
	•	Oxygen	20.6

Stack Diameter (circular)	0.40	m
---------------------------	------	---

Traverse	Traverse	Depth	ΔP	Т	Angle	velocity	Traverse	Depth	ΔP	Т	Angle	velocity
Point	Line	cm	mmH₂O	°C	0	m/s	Line	cm	mmH₂O	°C	0	m/s
1	А						В					
2	А						В					
3	А	5.0	14.9	49	<15	13.4	В					
4	А	7.1	17.5	48	<15	14.5	В					
5	А	10.0	19.1	49	<15	15.2	В					
6	А	14.2	19.2	49	<15	15.3	В					
7	А	25.8	19.0	50	<15	15.2	В					
8	А	30.0	18.9	50	<15	15.2	В					
9	А	32.9	19.0	50	<15	15.2	В					
10	А	35.0	21.6	50	<15	16.2	В					
11	А						В					
12	А						В					

kPa

kPa m²

%

		1
Average Pitot DP	18.60	mmH ₂ O
Average Temperature	322.5	к
Average Velocity	15.0	m/s
Average volumetric flow rate	1.89	m ³ /s at stack conditions
Average volumetric flow rate	1.59	m³/s (wet STP)
Average volumetric flow rate	1.57	m³/s (dry STP)
Average volumetric flow rate	0.06	m ³ /s (dry, STP, reference oxygen concentration)

Sampling plane requirements Re: BS EN 13284-1:2001 5.2

а	Angel of gas flow less than 15° with regard to duct axis			
b	No local negative flow			
с	Minimum pitot greater than 5Pa			
d	Ratio of highest to lowest local gas velocity less than 3:1			
	Minimum local gas velocity	13.4		
	Maximum local gas velocity	16.2		
	Ratio of highest to lowest local gas velocity	1.21		

Moisture Determination BS EN 14790:2005

	Volume	Temp	Pressure
_	m³	°C	mbar
Meter start	2970.302	16	1005
Meter end	2971.248	20	1005
Meter Yd	0.974		
Gas volume	0.858		

Impinger	1	2	3	4	5
Mass start (g)	719.7	655.4	730.0	816.3	198.0
Mass End (g)	720.5	657.9	731.5	819.4	198.1
Total Mass collected (g)		8.0			

Water vapour content (% v/v) 1.1

If water droplets are present in the gas, the water vapour content is calculated using BS EN 14790 Annex A

N/A % v/v

mm Y/N

Y/N

m³

m³

m³ Nm³

% v/v

%

Page 12 of 26

5.993

Ν

Y AQ126 2971.528

2972.313 0.785

0.701

0.9

102.7

Probe/Pitot ID No		15 /AQ102
Pitot Calibration Factor (Cp)		0.82
Gas Calibration Factor (Y)		0.974
Barometric Pressure	kPa	100.5
Duct static Pressure	kPa	0.00
Date		28/01/2016
Start Time	hh:min	14:53
End Time	hh:min	15:33
Sampling Duration	hh:min	00:40

Nozzle Diameter (d)
In-stack Filtration
Leak check OK
Meter ID No
Initial Gas Meter Reading
Final Gas Meter Reading
Sampled Vol, Dry at Meter
Sampled Vol, Dry STP
Moisture content of stack gas
Isokinetic

Impinger	1	2	3	4	5
Initial mass (g)	706.4	750.7	584.6	819.4	198.6
Final mass (g)	752.9	706.6	585.8	821.2	198.6

Sample Point Number Line Line Sampling Time Time Phot Reading Profile Sample Gas Temperature (Ts) Filter Temperature (Tm) Meter Temperature (Tm) Ortifice Pressure (Tm) 4 A 14:53 12.0 48 160 23 33.7 - 115:03 12.2 48 160 23 34.3 - 15:08 12.2 48 155 23 34.3 - 15:13 11.8 48 159 24 33.2 - 15:23 11.8 48 160 23 33.2 - 15:33 11.8 48 160 24 33.2 - 15:33 11.8 48 160 24 33.2 - End 15:33 11.8 48 160 24 33.2 - End 15:33 11.8 48 160 24 33.2 - End 15:33 12.8 12.8 12.8 12.8						Temperatures		
Point Number Time (h) (h) (h) (h) (h) (h) (h) (h) (h) (h)	Sample	Line	Sampling	Pitot Reading	Sample Gas	Filter	Meter	Orifice
Number Ithmin (h) (Ts) TC TC (Tm) (Dh) 4 A 14:58 12.0 48 160 23 33.7 1 14:58 12.0 48 160 23 34.3 1 15:03 12.2 48 155 23 34.3 1 15:03 12.2 48 155 23 34.3 1 15:03 11.2 48 159 23 33.2 1 15:13 11.8 48 159 23 33.2 1 15:23 11.8 48 160 24 33.2 1 15:23 11.8 48 160 24 33.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Point		Time		Temperature	Temperature	Temperature	Pressure
hhmin mm w.g *C *C *C mm w.g 4 A 14:53 12.0 48 160 23 33.7 1 14:58 12.0 48 160 23 33.7 1 15:03 12.2 48 160 23 34.3 1 15:08 12.2 48 155 23 34.3 1 15:13 11.8 48 159 24 33.2 1 15:23 11.8 48 160 23 33.2 1 15:23 11.8 48 160 24 33.2 1 15:28 11.8 48 160 24 33.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number			(h)	(Ts)		(Tm)	(Dh)
4 A 14:53 12.0 48 160 23 33.7 I 14:58 12.0 48 160 23 33.7 I 15:03 12.2 48 160 23 33.7 I 15:08 12.2 48 160 23 33.3 I 15:13 11.8 48 159 23 33.2 I 15:23 11.8 48 159 24 33.2 I 15:23 11.8 48 160 23 33.2 I 15:23 11.8 48 160 24 33.2 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td></td> <td></td> <td>hh:min</td> <td>mm w.g</td> <td>°C</td> <td>°C</td> <td>°C</td> <td>mm w.g</td>			hh:min	mm w.g	°C	°C	°C	mm w.g
14:58 12.0 48 160 23 33.7 15:03 12.2 48 160 23 34.3 15:05 12.2 48 155 23 34.3 15:13 11.8 48 159 23 33.2 15:13 11.8 48 160 23 33.2 15:23 11.8 48 160 24 33.2 15:23 11.8 48 160 24 33.2 15:24 13.28 11.8 48 160 24 33.2 16:25 11.8 48 160 24 33.2 16:27 11.8 48 160 24 33.2 16:28 11.8 48 160 24 33.2 11:29 11.2 11.8 48 160 24 33.2 11:29 11.8 48 160 24 33.2 11:20 11.8 48 160 24 33.2 11:21 11.8 48 160 24 33.2 11:21 11.8 48 160 24 33.2 11:21 11.1 11.8 14 11.1 <td< td=""><td>4</td><td>А</td><td>14:53</td><td>12.0</td><td>48</td><td>160</td><td>23</td><td>33.7</td></td<>	4	А	14:53	12.0	48	160	23	33.7
15:03 12.2 48 160 23 34.3 15:08 12.2 48 155 23 33.2 15:13 11.8 48 150 23 33.2 15:23 11.8 48 150 23 33.2 15:23 11.8 48 150 24 33.2 15:28 11.8 48 160 24 33.2 End 15:33			14:58	12.0	48	160	23	33.7
15:08 12.2 48 155 23 34.3 15:13 11.8 48 159 23 33.2 15:18 11.8 48 160 23 33.2 15:23 11.8 48 160 24 33.2 End 15:28 11.8 48 160 24 33.2 End 15:33			15:03	12.2	48	160	23	34.3
15:13 11.8 48 159 23 33.2 15:18 11.8 48 160 23 33.2 15:28 11.8 48 159 24 33.2 End 15:28 11.8 48 160 24 33.2 End 15:33 48 160 24 33.2 Image: Second			15:08	12.2	48	155	23	34.3
15:18 11.8 48 160 23 33.2 15:23 11.8 48 159 24 33.2 End 15:33 11.8 48 160 24 33.2 End 15:33 11.8 48 160 24 33.2 Image: State			15:13	11.8	48	159	23	33.2
15:23 11.8 48 159 24 33.2 End 15:28 11.8 48 160 24 33.2 End 15:33 1 1 1 1 1 Image: Second Sec			15:18	11.8	48	160	23	33.2
Image: system state			15:23	11.8	48	159	24	33.2
End 15:33 Image: Constraint of the second seco			15:28	11.8	48	160	24	33.2
Image: sector of the sector		End	15:33					
Image: state of the state								
Image: second								
Image: state stat								
Image: symmetry symmet								
Image: state stat								
Image: state of the state								
Image: second								
Image: Second								
Image: Second								
Image: state stat								
Image: state stat								
Image: state of the state								
Image: state stat								
Image: state stat								
Image: Second								
Image: state of the state o								
Image: state of the state o								
Image: Second								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6								
Averages 12.0 48.0 159.1 23.3 23.6				1		1		
Averanes 12.0 48.0 159.1 23.3 23.6				1		1		
Averance 12.0 48.0 159.1 23.3 23.6								
			Averages	12.0	48.0	159.1	23.3	33.6

Average velocity	12.02	m/s
Average flow rate	1.51	m³/s
Average flow rate	0.07	m³/s*

Page 13 of 26

Blank Filter Weight	Weight Collected	
Filter No. 448 71962/8	0.0001	g
Washings 71962/7	0.0003	g
Total	0.0004	g

Filter Weight Tes	st 1	Weight Collected	
Filter No. 399	71962/10	0.0001	g
Washings	71962/9	0.0008	g
Total		0.0009	g

Particulate Emission Results	Blank	
Detection Limit	13.30	mg/m ³ *
Particulate Emission	10.64	mg/m ³ *

Particulate Emission Results	Test 1	
Detection Limit	13.30	mg/m ³ *
Particulate Emission	23.94	mg/m ³ *

Laboratory	SAL	
Method N° & Accreditation Status	Gravimetric UKAS	
Date of analysis	10/02/2016	

Reference Gas Det	ails				
Species	Units	Value	Cylinder Reference		
Nitrogen	%	99.999	VC174989		
Oxygen	%	20.93	Dry Ambient Air		
Calibration Details		Initial Time	13:52	Final Time	16:00
	Units	Initial Zero	Initial Span	Final Zero	Final Span
Oxygen	%	0.00	20.89	0.20	20.86

Total Particulate Matter - Emission Results

Staffordshire Crystal Ltd., Brierley Hill, Permit No: PB/98, 71962p1r0 Furnace Visit 1 of 2016

Page 14 of 26

	_	
Probe/Pitot ID No		15/ AQ102
Pitot Calibration Factor (Cp)		0.82
Probe liner material		Titanium
Gas Calibration Factor (Y)		0.974
Barometric Pressure	kPa	100.5
Duct static Pressure	kPa	0.00
Date		28/01/2016
Start Time	hh:min	13:54
End Time	hh:min	14:34
Sampling Duration	hh:min	00:40

Impinger	1	2	3	4	5
Initial mass (g)	719.7	655.4	730.0	816.3	198.0
Final mass (g)	720.5	657.9	731.5	819.4	198.1

In-stack Filtration Leak check OK Meter ID No Initial Gas Meter Reading Final Gas Meter Reading Sampled Vol, Dry at Meter Sampled Vol, Dry STP Moisture content of stack gas

Nozzle Diameter (d)

Isokinetic

	-
5.993	mm
Ν	Y/N
Y	Y/N
AQ126	
2970.302	m³
2971.248	m³
0.946	m³
0.860	Nm³
1.1	% v/v
102.5	%

					Tempe	eratures		
Sample	Line	Sampling	Pitot Reading	Sample Gas	Meter	Probe	Filter	Orifice
Point		Time		Temperature	Temperature	Temperature	Temperature	Pressure
Number			(h)	(Ts)	(Tm)			(Dh)
		hh:min	mm w.g	°C	°C	°C	℃	mm w.g
4	А	13:54	18.2	48	16	175	175	51.1
		13:59	18.0	48	17	180	176	50.6
		14:04	18.2	48	18	180	180	51.1
		14:09	18.2	48	18	176	180	51.1
		14:14	18.2	48	19	180	180	51.1
		14:19	18.2	48	20	180	180	51.5
		14:24	18.2	48	20	180	180	51.5
		14:29	17.8	48	20	180	180	50.0
	End	14:34						
		Averages	18.1	48.0	18.5	178.9	178.9	51.0

Average velocity	14.80	m/s
Average flow rate	1.86	m ³ /s
Average flow rate	0.08	m ³ /s*

Heavy Metals - Sampling Data

Staffordshire Crystal Ltd., Brierley Hill, Permit No: PB/98, 71962p1r0 Furnace Visit 1 of 2016

Page 15 of 26

Date	28/01/2016
Start time	13:54
Finish time	14:34
Sample volume Nm ³ (dry gas)	0.860

HEAVY METALS	Impinger mass	
Impinger 1,2 & wash	230	g
Impinger 3 & wash	140	g

Measured moisture concentration	1.14	% v/v
Measured oxygen concentration	20.59	%

HEAVY METALS	Filter	Particulate	Impinger 1 & 2	Vapour phase	Impinger 3	Vapour phase	Detection	Efficiency	Total
	Analysis	Phase	Analysis	Emission	Analysis	Emission	Limit	% Trapped	Emission
	71962/6	Emission	71962/4	Impinger 1& 2	71962/5	Impinger 3		In impinger 3	
Units	μg	mg/m ^{3*}	μg/l	mg/m ^{3*}	μg/l	mg/m ^{3*}	mg/m ^{3*}	%	mg/m ^{3*}
Lead (Pb)	41	0.91994	15	0.07741	9.7	0.03047	0.01371	N/A	1.027825

TOTAL HEAVY METALS	Total	Detection	Total
Particulate Phase	Emission	Limits	Emission
& Vapour Phase	mg/m ^{3*}	mg/m ^{3*}	As % ELV
Total heavy metals, Pb	1.0278	0.0137	20.6

Numbers in bold indicate detection limits

Reference Gas Details					
Species	Units	Value	(Cylinder Reference	e
Nitrogen	%	99.999	VC174989		
Oxygen	%	20.93	Dry Ambient Air		
Calibration Details		Initial Time	13:52	Final Time	16:00
	Units	Initial Zero	Initial Span	Final Zero	Final Span
Oxygen	%	0.00	20.89	0.00	20.86

Metals excluding Mercury

wetas excluding werchy				
Laboratory	SAL			
Method Nº & Accreditation Status	ICPMS BS EN 14385	UKAS		
Date of analysis	10/02/2016			

Heavy Metals - Emission Results

Staffordshire Crystal Ltd., Brierley Hill, Permit No: PB/98, 71962p1r0 Furnace Visit 1 of 2016

Page 16 of 26

Date	28/01/2016
Start time	13:54
Finish time	14:34
Sample volume Nm ³ (dry gas)	0.860

HEAVY METALS	Impinger mass	
Impinger 1,2 & wash	230	g
Impinger 3 & wash	180	g

Measured moisture concentration	1.14	% v/v
Measured oxygen concentration	20.59	%

HEAVY METALS	Filter	Particulate	Impinger 1 & 2	Vapour phase	Impinger 3	Vapour phase	Detection	Efficiency	Total
	Analysis	Phase	Analysis	Emission	Analysis	Emission	Limit	% Trapped	Emission
	71962/3	Emission	71962/1	Impinger 1& 2	71962/2	Impinger 3		In impinger 3	
Units	μg	mg/m ^{3*}	μg/l	mg/m ^{3*}	μg/l	mg/m ^{3*}	mg/m ^{3*}	%	mg/m ^{3*}
Lead (Pb)	0.5	0.01122	0.3	0.00000	0.3	0.00000	0.01398	N/A	0.011219

TOTAL HEAVY METALS	Total	Detection	Total
Particulate phase	Emission	Limits	Emission
& Vapour phase	mg/m ^{3*}	mg/m ^{3*}	As % ELV
Total heavy metals, Pb	0.0140	0.0140	0.3

Numbers in bold indicate detection limits

Metals excluding Mercury

wetas excluding wercary				
Laboratory	SAL			
Method Nº & Accreditation Status	ICPMS BS EN 14385	UKAS		
Date of analysis	10/02/2016			

Heavy Metals - Field Blank Emission Results

Page 17 of 26

APPENDIX 3

Page 18 of 26

Diagram Of The Sampling Location

Diagram of sampling points across the cross section of the duct (not to scale).

Traverse length = 0.40 m

Point	% of D	Location
		cm
4	87.5	35.0

Page 19 of 26

General Calculations

Stack area:

Area of a circle =
$$\frac{\pi . D^2}{4}$$

D = Diameter (m) $\pi = 3.142$

Pressure conversion:

1mmH2O = 0.00980665 kPa 1mmH2O = 9.80665 Pa 1 mar = 0.1 kPa

Water vapour concentration:

From reference calculations (taken from BS EN 14790):

$$V_{WC(\%)} = \frac{\frac{M_{WC} \cdot V_{mol(std)}}{M_{W}}}{\frac{m_{WC} \cdot V_{mol(std)}}{M_{W}} + V_{m(std)}} \times 100$$

VWC (%) =Water vapour content on wet basis, in volume % (m³ of water vapour in m³ of wet gas)Vm(std) =Dry gas volume measured, corrected to standard conditions (m³)mWC =Mass of water collected in the impingers (g)Mw =Molecular weight of water, 18.01534 rounded to 18 (g/mol)Vmol(std) =Molar volume of water at standard conditions = 0.0224 (m3/mol)

Gas meter volume at standard conditions (STP)

From reference calculations (taken from BS EN 14790):

$$V_{m(std)} = y_d \times (V_2 - V_1) \times \frac{T_{std}}{T_m} \times \frac{p_m}{p_{std}}$$

Vm(std) =	Dry gas meter volume at standard conditions (m ³)
yd =	Gas meter calibration coefficient
(V2-V1) =	Dry gas meter volume at actual conditions (m ³)
Tm =	Actual Temperature (K)
Tstd =	Standard temperature (273 K)
pm =	Absolute pressure at the gas meter (kPa)
pstd =	Standard gas pressure (101.3 kPa)

Isokenetic Ratio (%):

From reference calculations (taken from EA TGN M2):

IsokineticRatio(%) =
$$\frac{Velocity at the sampling nozzle}{Velocity of the stack gas} \times 100$$

Estimating Measurment Uncertainty

Uncertainty estimates are calculated using the general rule of uncertainty propagation. Guidance is taken from publications including UKAS document M3003 and ISO 20988:2007.

Page 20 of 26

Flow Calculations

Velocity:

From reference calculations (taken from ISO 10780):

$$\overline{v} = KC \sqrt{\frac{T_s \,\Delta \overline{p}}{p_e \,M_s}}$$

Average velocity (m/s)

 С velocity calculation constant = 129

Ts = Average stack temperature (K)

Ms = Molar mass of gas; assume 29 kg/kmol unless the molar mass is < 27 kg/kmol or > 31 g/kmol

K= Pitot calibration coefficient

Pe = Absolute gas pressure (kPa)

 $\Delta \overline{p} = Average pitot tube pressure differencial (kPa)$

Volume flow rate

From reference calculations (taken from ISO 10780):

$$q_{va} = vA$$

qva = Average flow rate (m³/s) \overline{v} = Average velocity (m/s) A = Stack cross-sectional area (m²)

Volume flow rate corrected for moisture

From reference calculations (taken from BS ISO 9096):

$$q_{m} = q_{va} \frac{(100 - H_{a})}{(100 - H_{m})}$$

qm =Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m^3/s)

Ha = Moisture at actual conditions (%volume)

Hm = Reference moisture (%volume)

Volume flow rate corrected for temperature and pressure

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{\left(T_m p_a\right)}{\left(T_a p_m\right)}$$

qm = Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

Ta = Temperature at actual conditions (K)

Tm = Reference Temperatue (K)

Absolute gas pressure at actual conditions (kPa) pa =

pm = Reference pressure (kPa)

Volume flow rate corrected for oxygen

From reference calculations (taken from BS ISO 9096):

$$q_m = q_{va} \frac{(20.9 - O_{2,ref})}{(20.9 - O_{2,m})}$$

qm = Corrected volume flowrate (m³/s)

qva = Volume flow rate at actual conditions (m³/s)

O2,m = Actual oxygen concentration (%)

O2, ref = Reference oxygen concentration (%)

Page 21 of 26

Concentration Calculations

Concentration:

From reference calculations (taken from BS EN 13284-1):

$$c = \frac{m}{V}$$

c = Concentration

m = Mass of substane

V = Volume sampled

Mass Emission

Mass emission= $c \times q_m$

- *c* = Concentration
- *q* = Volume flow rate

Concentration corrected for oxygen:

From reference calculations (taken from BS ISO 9096):

$$c_m = c_a \times \frac{20.9 - O_{2,ref}}{20.9 - O_{2,a}}$$

cm =Concentration at reference conditionsca =Actual concentrationO2, ref =Reference oxygen (%)O2, a=Actual Oxygen (%)

Concentration corrected for moisture:

From reference calculations (taken from BS ISO 9096):

Convert wet gas to dry gas

$$c_{dry} = c_{wet} \times \frac{100}{100 - H_a}$$

Convert dry gas to wet gas

$$c_{wet} = c_{dry} \times \frac{100 - H_a}{100}$$

cwet = Concentration wet gas

cdry = Concentration dry gas

Ha = Water vapour content (%vol)

Conversion of parts per million (ppm) to mg/m³ From reference calculations (taken from EA TGN M2):

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular \ weight(g)}{molar \ volume(l) \ at \ a \ given \ temperature}$

molar volume at 273K = 22.4 litres

When Converting TOC

 $Concentration(mg/m^3) = \frac{Concentration(ppm) \times molecular \ weight of \ carbonin \ span \ gas(g)}{molar \ volume(l) \ at \ a \ given \ temperature}$

Page 22 of 26

Calculation of Uncertainty Estimates - Manual Monitoring Techniques

$$C_{m} = \frac{Q_{m}}{V_{std}}$$
$$V_{std} = V_{T.p} \times \frac{T_{std}}{T} \times \frac{p}{P_{std}}$$

Where:

C _m	=	the measured concentration	in	mg/m ³
Q _m	=	mass concentration collected in absorber solution and filter	in	mg
V _s	=	the volume of the sample solution	in	I
V _{std}	=	volume sampled at standard conditions	in	m ³
T _m	=	mean temperature of gas meter	in	K
T _{std}	=	standard temperature	=	273K
p=prel+Patm	=	absolute pressure = gas meter pressure + atmospheric pressure	in	kPa
P _{std}	=	standard pressure	=	101.325 kPa
V _{T.p}	=	volume sampled as indicated by the gas meter	in	m ³

Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^2(C_m)}{(C_m)^2} = \frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{std})}{(V_{std})^2}$$

Expression for calculation of the combined uncertainty of the gas volume

$$V_{std} = V_{T.p} \times \frac{T_{std}}{T_m} \times \frac{p}{P_{std}}$$

Assuming that uncertainties associated with the standard quantities T_{std} and P_{std} are negliable Expression for calculation of the combined uncertainty of the measured concentration

$$\frac{u^2(C_m)}{(C_m)^2} = \frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2}$$

$$u(C_m) = \sqrt{\left(\frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2}\right)} \times (C_m)^2$$

Overall expanded uncertainty (k = 2)

$$U(C_m) = u(C_m) \times k$$

Uncertainty of the measured concentration at oxygen reference concentration

$$u(C_{m,O_{2,ref}}) = \sqrt{\left(\frac{u^2(Q_m)}{(Q_m)^2} + \frac{u^2(v_s)}{(v_s)^2} + \frac{u^2(V_{T,p})}{(V_{T,p})^2} + \frac{u^2(T)}{(T)^2} + \frac{u^2(p_{rel})}{(p)^2} + \frac{u^2(p_{atm})}{(p)^2} + \frac{u^2(O_{2,meas,dry})}{(21 - O_{2,meas,dry})^2}\right)} \times (C_{m,O_2,ref})^2$$

Where:

u(Cm,O _{2,ref)}	=	uncertainty associated with the mass concentration at O_2 reference concentration	in	mg/m ³
Cm,O _{2,ref}	=	mass concentration at O2 reference concentration	in	mg/m ³
O _{2,meas}	=	O ₂ measured concentration	in	% volume
u((O _{2,meas)dry)}	=	uncertainty associated to the measured O ₂ concentration	in	% (relative to $O_{2 \text{ meas}}$)

Page 23 of 26

Calculation of Uncertainty Estimates - Instrumental Monitoring Techniques

Model equation	l i				
$C_{ppm} = C_{readin}$	+Co	$rr_{fit} + Corr_{0,dr} + Corr_{s,dr}$	$+Corr_{rep}$	$+Corr_{adj}$ +	$\sum_{r=1}^{p} Corr_{rnf} + Corr_{rnt}$
Where: C _{,ppm} C _{NO,reading} Corr _{fit} Corr _{0,dr} Corr _{s,dr}	= = = =	concentration in ppm concentration given by ana correction of lack of fit correction of zero drift correction of span drift	alyser	,	i=1 image: i
Calculation of p	partial u	ncertainties			
u(Corr _{fit})	=	$\frac{\left(\frac{X_{fit,\max}}{100 \times range}\right)}{\sqrt{2}}$		Where: X _{fit,max}	is the maximum allowable deviation from linearity
Expressed as %	of the ra	$\sqrt{2}$ ange and calculated by applyi	ng a rectanç	gular probability	distribution
u(Corr _{0,dr})	=	$rac{X_{0,dr}}{\sqrt{3}}$	u(Corr _{s,dr})	=	$rac{X_{s,dr}}{\sqrt{3}}$
u(Corr _{rep})	=	$max~(S_{0,rep}~;~S_{srep})$	=	S _{rep} Where: S _{r,0} S _{r,s}	is the standard uncertainty at zero level is the standard uncertainty at span level
u(Corr _{adj})	=	$u(Corr_{loss}) + u(Corr_{cal})$		Where:	
u(Corr _{loss})	=	$\frac{C_{j,loss}}{\sqrt{3}}$		u(Corr _{loss}) u(Corr _{cal}) cj, _{loss}	is the uncertainty due to losses in sample line is the uncertainty due to losses in sample line is the concentration of sample loss at span level is the expanded uncertainty of the calibration cas
a(concar)	_	$\frac{\frac{-cal}{2}}{2}$	(
u(Corr _{inf})	=	$c_j \sqrt{\frac{(x_{j,\max} - x_{j,adj})^2 + \frac{(x_{j,\max} - x_{j,adj})^2}{(x_{j,\max} - x_{j,adj})^2}}$	$(x_{j,\min}-x_j)$	$(x_{j,\max} - 3) \times (x_{j,\max} - 3)$	$-x_{j,adj} + (x_{j,\min} - x_{j,adj})^2$
				Where: Cj X _{j,min} X _{j,max} X _{j,adj}	is the sensitivity coefficient of the influence quantity is the minimum value of the influence quantity during monitoring is the maximum value of the influence quantity during monitoring is the value of the influence quantity during adjustment
u(Corr _{int}) and	=	$\frac{c_j}{Int_{j,test}}\sqrt{\frac{Int_{j,\max}^2 + Int}{\sqrt{\frac{1}{10}}}}$	$t_{j,\min} \times Int_j$ 3	$_{,\max} + Int_{j,\min}^{2}$ Where:	
u(ΣCorr _{int})	=	$\max\left[S_{Int,p};S_{Int,n}\right]$		c _j Int _{j,test} Int _{j,min} Int _{j,max} Int _{j,adj} S int p	is the sensitivity coefficient of the interferent j is the concentration of the interferent j used to determine c _j is the minimum value of the interferent j quantity during monitoring is the maximum value of the interferent j quantity during monitoring is the concentration of the interferent j in the cal gas used to adjust the analyse is the sum of interferents with positive impact
Combined unce	ertainty			S int,n	is the sum of interferents with negative impact
u(C, ppm)	=				
$\sqrt{u^2(corr_{g_i})}$	$+u^2(cc$	$(rr_{0,tr}) + u^2(corr_{tr,tr}) + u^2(corr_{tr,tr})$	corr)+ u	$u^2(corr_{out})+u$	$\frac{1}{2}(corr_{unt}) + u^{2}(corr_{unt}) + u^{2}(corr_{unt}) + u^{2}(corr_{unt}) + S_{tax}^{2}$
Overall expande	ed unce	$(k = 2) \qquad II(C)$	T = u(C)		C a, press / C iemp / C voir / C aaj / - ini
Uncertainty of I	NOx me	asurements	<i>m</i>) - <i>u</i> (<i>c</i> _{<i>m</i>})	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
u(C _{NOx} , _{conv})	=	$\frac{C_{\scriptscriptstyle NOx} \times R \times \eta}{\sqrt{3}}$		Where: C _{NOx} R	is the concentration of NOx measured by the analyser is the ratio of NO:Nox in the stack gas is the NOx converter efficiency
Combined unce	ertainty	NOx measurements		1	
u(C _{NOx} , _{stack})	=				
$\sqrt{u^2(corr_{fit})+u}$	$u^2(corr_0)$	$\overline{)}_{,dr}$ $\overline{)}$ + $u^2 (corr_{s,dr})$ + $u^2 (corr_{s,dr})$	$(r_{rep}) + u^2 (c$	$orr_{s,vf}$)+ $u^2(contribute)$	$prr_{a,press} + u^2 (corr_{temp}) + u^2 (corr_{volt}) + u^2 (corr_{adj}) + S_{lat}^2 + u^2 (corr_{NOx,conv})$
Uncertainty of r	mass co	ncentration at oxygen refer	ence conce	entration	
u(C, _{O2 ref})	=				
$u^2(corr_{fit})+u^2$	$(corr_{0,d})$	$(u)+u^2(corr_{s,dr})+u^2(corr_{re_1})$	$_{p})+u^{2}(cor$	$r_{s,vf}$)+ $u^2(cort)$	$r_{a,press}$ + $u^2(corr_{temp})$ + $u^2(corr_{volt})$ + $u^2(corr_{adj})$ + S_{Int}^2 + $\left(\frac{u^2(O_{2,meas,dry})}{(21 - O_{2,meas,dry})^2}\right)$

∜ Where: u(C,O_{2,ref)} C,O_{2,ref}

O_{2,meas}

- uncertainty associated with the mass concentration at O2 ref. concentration = mass concentration at O2 reference concentration = = O2 measured concentration
- u((O_{2,meas)dry)} = uncertainty associated to the measured O2 concentration

 mg/m^3 mg/m³

in

- in in % volume
- in % (relative to $O_{2 \text{ meas}}$)

Page 24 of 26

APPENDIX 4

Uncertainty Estimate For The Measurement Of Total Particulate Matter

Total Particulate Matter

Symbol	Mass concentration of TPM	Units							
Cm	1.28	mg/m ³		Filter	0.10		mg		
Cm at O2 ref	23.94	mg/m ³		Washings	0.80		mg		
	5 / 6		I.		D	Sector Protection			
Symbol	Reference Oxygen	Units		Symbol	Daily emission limit value		Units		
O2,ref (0=No Correction)	13	%		DELV		20.0	mg/m°		
	Mass of Particulate								
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui		
u (calBal)	Calibration	0.1180	mg	Normal	2	1	0.0590		
u(repBal)	Repeatability Filter	0.0110	mg	Normal	1	2	0.0220		
u(repBal)	Repeatability Washings	0.0300	mg	Normal	1	2	0.0600		
u (driftBal)	Drift	0.0312	mg	Rectangular	$\sqrt{3}$	1	0.0180		
u(resBal)	Resolution	0.0050	mg	Rectangular	$\sqrt{3}$	1	0.0029		
u(aceBal)	Residual acetone	0.0400	mg	Normal	2	1	0.0200		
u(buoBal)	Air buoyancy	0.0015	mg	Normal	1	1	0.0015		
u(mass)	Combined Uncertainty	-		Normal	-	-	0.0911		
u (mass)/mass	Relatve	0.900	mg	-	-	-	0.0710		
						u(mass) ² /mass ²	0.005040		
	E 10 1 1 1 1 1 1 1 1 1	11	A . D			0.04	a.		
U(Wm)	Expanded Combined Weighing	Uncertainty	As Percent	age of DELV k=2	±	0.91	%		
	Volume of compled acc								
Cumbal	Volume of sampled gas	Value	Linita	Drobobility Distribution	Divisor	ci	11;		
	Calibration	0.0024	Units	Probability Distribution	DIVISOR	1	0.0017		
$u(\operatorname{carv}_{T,p})$	Bopostability	0.0034	m ³	Normal	1	1	0.0017		
$u(driftV_{\tau})$	Drift	0.0004	m ³	Bectangular	- /3	1	0.0004		
$u(\text{resV}_{T,p})$	Besolution	0.0002	m ³	Rectangular	1/2	1	0.0011		
$\mu(V_{T_{\tau}})$	Combined Uncertainty	-	-	Normal	- V J	-	0.0021		
$\frac{u(V_{T,p})}{V_{T,p}}$	Belatve	0.701	m ³	-	-	-	0.0030		
- (1.p/ 1.p		1				μ (Vm) ² /Vm ²	0.000009		
	Temperature of the DGM					u(111) / 111			
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui		
u(calTi _m)	Calibration	1.0	K	Normal	2	1	0.5000		
u(calTc _m)	Calibration	1.0	K	Normal	2	1	0.5000		
u(resT _m)	Resolution	0.1	K	Rectangular	$\sqrt{3}$	1	0.0577		
u(driftT _m)	Drift	1.0	К	Rectangular	$\sqrt{3}$	1	0.5774		
u(T _m)	Combined Uncertainty	-	-	Normal	-	-	0.9147		
u(T _m)/Tm	Relatve	296.3	K	Normal	-	-	0.0031		
						$u(\text{Tm})^2/\text{Tm}^2$	0.000010		
	Atmospheric Pressure								
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	Ci	Ui		
U(P _{atm})	Metrological Office	300	Pa	Normal	$\sqrt{3}$	1	1/3		
$\frac{U(P_{atm})}{U(D_{atm})}$	Combined Uncertainty	-	-	Normal	-	-	1/3		
u(P _{atm})/P	Relative	100500	-	INOrmal	-	-	0.0017		
	Relative DGM Pressure					$u(P_{atm})/P$	0.000003		
Symbol	Source of Uncertainty	Value	l Inite	Probability Distribution	Divisor	ci	1 li		
u(Prol)	DGM Pressure	40	Pa	Normal	1	1	40		
u(Prol)	Combined Uncertainty	-	-	Normal	-	-	40		
u(P _{rel})/P	Measured pressure	100829	-	-	-	-	0.0004		
1.00						u(Prel) ² /P ²	0.0000002		
	Oxygen reference concentration								
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui		
u((O2,meas)dry)rel	Measurement of oxygen	0.20	%	Normal	1	1	0.2000		
	Uncertainty of oxygen correction	-	-	-	-	-	0.4664		
	Measured Oxygen	20.6	%			u (Orel) ² /O ²	0.217565		
Measurement uncertainty	1	1				1			
u(Cm)	Combined Standard Uncertainty				±	0.13	mg/m°		
u(Cm) at ref O ₂	Combined Standard Uncertainty				±	11.42	mg/m³		
Even ended over the ball	ware a local a local of the field of the form	L 0							
Expanded uncertainty exp	pressed with a level of confidence of 95%	, к=2				0.00			
	Expanded Combined Uncertainty	K = 2				0.26	mg/m°		
	Expanded Combined Uncertainty	n = 2 k - 2			±	∠U.I 1 २	7/0 0/.		
		n = ∠			Ţ	1.3	/0		
Expanded uncertainty at o	Expanded uncertainty at avoiden reference conditions expressed with a level of confidence of 95% k-2								
LI(Cm) at rof O	Funandad Cambined Lineartaint		Somuence	01 00 /0, N=2		00.05	(3		

m) at ref

 U(Cm) at ret O_2 Expanded Combined Uncertainty
 k = 2 \pm 22.85
 mg/m³

 U(Cm_{rel}) at ref O_2 Expanded Combined Uncertainty
 k = 2 \pm 1780.5
 %

 U(Cm,rel,ELV) at ref O_2 Expanded Combined Uncertainty
 k = 2 \pm 1780.5
 %

 The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor (k = 2), providing a level of confidence of approximately 95%

 The uncertainty evaluation has been carried out in accordance with UKAS requirements.

 ng/m

Uncertainty Estimate For The Measurement Of Heavy Metals

Symbol	Total mass concentration of Lead	Units	7				
Cm	0.05324	mg/m3					
Cm at O2 ref	1.02782	mg/m3					
	Mass of heavy metals in filter digest		-				
		Qmf (mg)	LODmf	u(Qmf) % (k = 2)	u(Qmf)/Qmf	u(Qmf)2/Qmf2	
	Lead (Pb)	41.000	0.500	23.000	0.115	0.013	
	Concentration of heavy metals absorp	tion solution					
		Qm (mg/l)	LODm	u(Qm) % (k = 2)	u(Qm)/Qm	u(Qm)2/Qm2	
	Lead (Pb)	15.000	0.300	20.500	0.103	0.011	
	Volume of sampled gas						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(calVT.p)	Calibration	0.0028	m3	Normal	1.000	1.000	0.003
u(driftVT.p)	Drift	0.0027	m3	Rectangular	$\sqrt{3}$	1.000	0.002
u(resVT.p)	Resolution	0.0002	m3	Rectangular	$\sqrt{3}$	1.000	0.000
u(VT.p)	Combined Uncertainty	-	-	Normal	-	-	0.003
u(VT.p)/VT.p	Relative uncertainty	0.860	m3	-	-	-	0.004
						u(Vm)2/Vm2	0.000014
	Temperature of the DGM						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(calTim)	Calibration	1.0	К	Normal	2.000	1.000	0.500
u(calTcm)	Calibration	1.0	К	Normal	2.000	1.000	0.500
u(resTm)	Resolution	0.5	К	Rectangular	$\sqrt{3}$	1.000	0.289
u(Tm)	Combined Uncertainty	-	-	Normal	-	-	0.764
u(Tm)/Tm	Relative uncertainty	292	К	Normal	-	-	0.003
						u(Tm)2/Tm2	0.000007
	Atmospheric Pressure						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(Patm)	Metrological Office	300	Pa	Normal	1.000	1.000	300
u(Patm)	Combined Uncertainty	-	-	Normal	-	-	300
u(Patm)/P	Relative uncertainty	100500	-	Normal	-	-	0.003
						u(Patm)2/P2	0.000009
	Relative DGM Pressure						
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(Prel)	Manometer	40	Pa	Normal	1.000	1.000	40.000
u(Prel)	Combined Uncertainty	-	-	Normal	-	-	40.000
u(Prel)/P	Relative uncertainty	101001	-	Normal	-	-	0.0004
						u(Prel)2/P2	0.000002
r	Volume (mass) of Absorption Solution		•				
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u(repvs)	Repeatability	0.13	g (ml)	Normal	1.000	1.000	0.130
u(calvs)	Calibration (Tare)	0.10	g (ml)	Rectangular	1.000	1.000	0.100
u(drvs)	Drift	0.10	g (ml)	Rectangular	1.000	1.000	0.100
u(resvs)	Resolution	0.05	g (ml)	Rectangular	√3	1.000	0.029
u(vs)	Combined Uncertainty	-	-				0.194
u(vs)/vs	Relative uncertainty	230	-	Normal	-	-	0.0008
						u(vs)2/vs2	0.000007
r	Oxygen reference concentration		•				
Symbol	Source of Uncertainty	Value	Units	Probability Distribution	Divisor	ci	Ui
u((O ₂ ,meas)dry)rel	Measurement of oxygen	0.28	%	Normal	1	1	0.282
	Uncertainty of oxygen correction	-	-	-	-	-	0.6807
	Measured Oxygen	20.6	%	L		u (Orel) ² /O ²	0.4633163
u(Cm)rel	Overall Combined Uncertainty	mg/m3	Total Lead			±	0.0082
U(Cm)rel	Expanded Combined Uncertainty	mg/m3	Total Lead		k = 2	±	0.0164
U(Cm,rel)	Expanded Combined Uncertainty	% of ELV	Total Lead		k = 2	±	0.3
u(Cmrel) at ref O2	Expanded Combined Uncertainty	mg/m3	I otal Lead		K = 2	±	1.435
U(Cm,rel)	Expanded Combined Uncertainty	% of ELV	i otal Lead		K = 2	±	0.3

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor (k = 2),

Total Mass Concentration Of Metals - Lead

providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.